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1. Introduction 

The lineax selection index developed by H. F. Smith C1936-j i s  a l inear  

combination of the elements of the phenotypic observation vector X f "  

t h 
where I. denotes the composite index value associated with the j  ember o f  a 

J 
population and b i s  an n-vector of unknown coefficients (weights). This index 

was conceived t o  aid i n  discriminating between selection programs among s i -m i r t i es  

of plants. Assuming I E  was distributed as a multivariate normal with covmiance 
j 

matrix 9, Smith showed tha t  the optimal choice of b (i .e. ,  yielding greatest 

expected genetic advance) i s  

where G i s  the genotypic covariance matrix and a i s  an n-vector of economic x~eights ,  

Since Smith's paper much research has been conducted on the l inear  index 

and i t s  nonlinear competitors. Rotable among these are Henderson C19633, Keui~?.l;lnor.wse 

and Nordslrog 119593, Williams [1962j, Hazel C19433 and VanVleck [1970], See 

Williams fo r  a thorough review. 



Smith and F'faffenberger [1970) considered index estimation using rni~Ltivaria2;e 

normal phenotypic observations, both f u l l  and pa r t i a l ly  complete vectors, assraing 

G and o, are kno~m, but 1) unknown. This procedure applied a technique of IIocki.ezg 

and Smith L1968-j fo r  est iaat ing the parmeters  of a multivariate normal dis-i;r3wbu-cion 

i n  the presence of p a r t i a l  data. A l l  data i s  used and several a l ternate  methods 

are presented f o r  indexing those individuals possessing p a r t i a l  records, A 

contrast between HEhndesson's techniques and t h a t  of Smith and Pfdfenberger 

(s-P i n  the sequel) i s  given. 

This paper considers the l inear  selection index as described by (I)  T K L " ~  h'cr 

chosen as i n  (2) assuming both f u l l  and partial. records are available and %ha?; 

the phenotypic vectors follow a rnultinomial distribution. Thus, t h i s  index deviztes 

both from the assumption t h a t  the phenotypic covariance matrix i s  known m d  f;-om 

the assumption of normality. 

fin estimation procedure similar t o  tha t  of Hocking and Oxspring [l9711 i s  

discussed and cer tain simulation studies are presented t o  support the e%a,imed 

optimality properties. In addition, the S-P multivariate normal technique rs 

applied t o  multinomial data f o r  comparison with the nultinomial estimation yroee&we, 

2. Estimation Procedure 

Consider a phenotypic observation vector X' = ( x ~  .. . ) which i s  distributed 

multinomially with known parameter M and unknown parameters 0 '  = (el .. . ek) - 
That is, 



xihe r e kl = I - I: x. and R = 1 - 
0 .  

We desire t o  index each vector from 
.id J lrt-1 .i =l 

a population dis t r ibuted as (3); hoTiev&r, some of these vectors have missing 

elements ( r eca l l  t ha t  any marginal dis t r ibut ion from a multinolnial i s  again 

multinomial i n  form). ,!'s i n  Smith and Pf affenberger tlg70 1 a l l  informatian, both 

f u l l  and p a r t i a l  vectors, i s  u t i l i zed  i n  estimating S1, ..., 0 and thus $0 
Ir 

estimating each individual's index, assuming G and a known. 

Following the outline of Hocking and Smith [19681 group the data ?rectors by- 

tzhich elements are missing, estimate within each group the available 8 ., aid them 
3 

optimally combine these estimates. For example, consider a population of sine X 

where n individuals have recorded a l l  elements of the phenotypic observatior. 
1 

vector while n individuals have only the f i r s t  (renumbering i f  necessary) 8 ": k 
2 

elements recorded, n -r- n = N. Thus, from the f u l l  data group each pa?rmei;~!r 1 2  

@. can be estimated unlsiasedly by , j = 1, . . . , k, whereas from the secondE 
J 1 

group (pa r t i a l  data) only 8 , ..., 9 can be estima-Led by 0 , j = I, ..., t., 
1- .e 2 3  

i n  each case, the usual maxinim likelihood est i~?~zi ;es  are used. Combining these 

estimates as i n  Hocking and Smith yields 

9 = % . +  C a . ( 9  - 6 1 ,  j = l ,  ..., k .  
j 1 J r j l r  2 r  

Hate tha t  A: = (4j, ..., a ) i s  chosen t o  minimize the variance of B., j = L, ..., k. 
J f,j - 66 

If A'. does not depend on the psameters 8', then 0 .  i s  unbiased and minialrn 
.I 

w 
J 

variance. In general, 8 .  i s  consistent, asymptotically unbiased and aswpto-kicaQly 
J 

eff ic ientwhen f u l l  data estimates of S '  are used i n  A' 
j " 

A general formulation for .A cm be given. Let V be the covarian,ce mmrix 
3 

of (X,, ..., . Thus, 



.. A 

Then the covariance matrix of 1 0 ' i s  given by ~ / n  1 M and f o r  2 8 ' by D 2 VD'/Q 2 - 2  M, where 

D = (I& : 0) and I$ i s  an ident i ty  matrix of order &. Thus, 
2 

Note thdt D2 9= =?, where 20' = (Ql, . . . , e$). 

If i n  addition, there i s  a th i rd  data group of n 3 aultinomial vectors w i t h  

parameters ld and D 0,  D i s  a s x k mi tary  matrix of ones and zeros, then nev 
3 3 - 6 

estimates would combine 0 with 6 .) , the estimates from t h i s  th i rd  group. In 
13 J 

such a ease, i n  matrik notation 

Note tha t  D makes 8 conformable t o  8. B i s  chosen t o  minimize the variance of 
N 3 3 - 
B aid sa t i s f i e s  

where M i s  the covmiance matri-x for  the conibined f i r s t  t:.ro da,ta groups, aihh-k is, 

To estimate 9' when more than three groups of data are available, con-tinue in the  

fashion out l ined above, producing a t  each stage the e s t  imated asjrmpt o-t ic @ ~ ~ ; z i ~ ? i r ' e  

matrix of the combined estirilo-be fo r  use a t  the next stage. 
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Now t o  achieve an estimate based on a l l  data the f i n a l  estimate of R 9  is used - - 
fo r  estimation of the covariance matrix P. Tha'c i s ,  i n  the case above 9 i s  

..# 

..# 

3 
substituted f o r  9 .  i n  the formulation of P yielding a matrix P. Then se t  

3 

,., - 
With b m index fo r  each phenotypic vector can be given; i n  those cases of missing 

data the f i n a l  es.timaJce fo r  the mean of tha t  element i s  substi tuted t o  procZuce a 

f u l l  vector t o  index. In general, the procedure yields consj-stent and ssym$-i;o7=icaZiy 

effj-cient estimates. Note tha t  estimated phenotypic means, variances and eov,lrimecs 

are available upon terminat ion. 

Lxa.1ple 1 : Let k = 3, & = 2, as above. Then, 

In t h i s  case D = 
2 

h ..# w h A A 

Thus, 6 and 8 are just  the weighted swns of B and 5 
1% 2 1 1 2' 2O29 

respectivel3-, 
1 2 

mnd axe unbtasedl and mir,imm variance. Mote, ho~rever, t ha t  the coefficieli-ks for 
w - 
8 depend on 8 '  , thus 9 w i l l  be a consistent, asymptotic efficient estj.ma%e ~rhiael? 
3 3 
0. i s  s~~13stitutedl f o r  8 j = 1, 2, 3. 
1 J 3 ' 



Example 2: Consider t he  sane s i t ua t i on  a s  i n  Example 1, but with a thil-d &akad 

group, s = 1. Then 

where 

and 

&uin the  coeff ic ient  depends on the  parameters t o  be estimated, but  subs t i tuJ~ ion  - 
by the  "best" previous esJcimates ( i . e . ,  8) yie ld  consis-cent and asymptotical1;r 

e f f i c i en t  estimates. 

p e :  Consider t he  same s i t ua t i on  as i n  Example 1, but 36th a t h i r d  data 

group containing information on X and X 
2 3 ' 

where 
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3. Simulation Studies 

In the 
In the following Monte Ccwlo simulation studies we se t  a' = ( 1  1 1) m-d 

with 6 '  = (.15, .25, -40) i n  each ca,se. 

Table 1 records a surmary of s i r d a t i o n  studies (200 runs) of Example 2 ~trbere 

y = M = M = 20, n = 100, n2 = 50, n = 25, and clear ly indicates the g ~ e a t e r  
2 3 1 3 

precision nchieved by using the p a r t i a l  data vectors. Table 2 summarizes a sirnil?$ 

experiment with the sane data configuration but i n  the presence of a much higqer 

percentage (80$) of p a r t i a l  data vectors (nl = 10, rx = 15, ng = 25). Agaul 
2 

reductions i n  the smple variance of the estimates are noted. In both cases the 

esbimates of 8' are v i r tua l ly  unbiased but the estimabe of b '  = (bl, b29 b3) are 

biased s l ight ly  upward. These examples, of course, are f o r  a situation. f o r  ~rhicln 

ve have "nested" data, and i n  such s i tuat ions Hocking and Oxspring C1971.1 hme 

shown tha t  t h i s  technique yields maximum likelihood estimates. 

Tables 3 and 4 summarize simulation conducted on Zxample 3 but w i % h  -c~m 

different sample sizes.  Each of these tables  again r e f l ec t  the consistency of 

the estimate and the reduction i n  variances achieved by u t i l i z ing  the p-x-i;~al detr>, 

there i s  some bias  noted i n  the b term. 



Table 5 swnmarizes an -Exaniple 2 experiment using the:.same parameters as i;l:ose 

of Table 1. That i s ,  175 vectors X' = (X X X ) were generated t o  follow a. 
1 2 3  

multinomia.1 dis t r ibut ion with parameters M = 20, and 9' = ( 0 4 1 2 e 3 ) s  

Each of these vectors i s  indexed by equations (1) and (2)  using the popuLadion 

values for  8 ' .  The order resul t ing i s  cal led the "true" order. It i s  desired t o  

coro_pare t h i s  order with the order resul t ing from estimated indexes i n  several 

different cases. F i r s t ,  a l l  175 f u l l  data vectors are used t o  estimate 0-and p, 

'chus yielding an estiniated index f o r  each. The correlation between the  estimated 

ordering and  he "true" ordering i s  given by the f i r s t  entry of Table 5. Next a 

missing data s i tuat ion i s  created by randomly selecting 75 vectors and deleting A, 
3 

from 50 of them, and X a ~ d  X from 25 of them. Thus now we have avail.abbe LOO 
2 3 

f u l l  vectors and 75 p a r t i a l  vectors of two types. The procedure of Section 2 5s 

applied t o  estimate 8'  and P (and thas b) .  The index order resul t ing i.s c a n ~ a r e d  

t o  the "true" ordering yielding the second entry of the table .  Finally, the 

Xmith-Pf af f enberger [19701 multivariate normal indexing technique i s  applli ed t o  

%he paxt ia l  multinomial data and the f i n a l  entry i s  the correlation between Hie 

resul t ing ordering and. the t rue ordering. It should be noted tha t  i n  the  abc)ve 

ease the p a r t i a l  data vectors were indexed by means of applying the estimxted b 

vector t o  the pa r t i a l  vectors where the missing element i s  i n  turn estimdkd by' 

i t s  expected value i n  the multinomial case and by regression estimate i n  the rnul- 

t i va r i a t e  normal case. Further explanation of the regression estimate in. the 

multivariate normal case i s  given i n  the paper by Smith and Pf affenberger, I'i 

should be noted tha t  the estimate of the population mean i s  precise as indici2-bed 

by %he simulation of estimates of @ 
2 ' 



Table 1 

Simulation of Example 2 (n = 100, n2 = 500, n3 = 25; 200 runs) 1 

I l ean Estinate 

Parameter el = '15 

1 s t  Data Group 

2nd Adjoined 

Sample Variances of Estimates 1 

/ 3rd Adjoined .3705 

Table 2 

Simulation of Example 2 (n = 10, n2 = 15, n = 25; 500 runs) 
1 3 

Me an Estimate 

Parameter 

1st Data Group -1503 .2515 3994 

2nd Adjoined 
I 

.1495 . 2515 3999 

2nd Adjoined ,2816 

I 
1 3rd Adjoined 
I 

el325 

-- -- 

S u p l e  Variances of jdstjmates 
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Table 3 

Simulation of Example 2 (n = 50, n2 = 50, n3 = 50; 100 runs) 
1 

/ Mean Estimate 

1 s t  Data Group 

Sample Variances of Estimates 

1st Data Group 

2nd Adjoined 1 *555 1 ,969 1 1.449 

Table 4 

Simulation of Example 2 (5 = 10, n = 15, n3 = 25; 100 runs) 
2 

Mean Estimate 

--- 
Sample Variances of Estimates 



Table 5 

Average Correlation With "Truer' Ranlring (10 runs each) of Ydtinomid Data 

Simulation of Example 2 (nl = 100, n2 = 50, n3 = 25) 

Estimation Index Before Deletion ,7448 .7236 

Mult inorai al Estimates ,7415 .7175 

Smith-Pf af f enberger Mult inomial -7356 .71T;I. 
Mormal E s t  b a t  e s 

0' = (.15, .25, .40) @'=(.27, -08, .47) 

4. Conclusions 

In t h i s  paper we develop a l inear  selection index using phenotypic observakion 

vectors multinomially dis tr ibuted and estimate the index value of each vector by 

estimating i n  an optimal, sequential fashion the pazameters of the parent m~l - t i ne r c i a l  

distribution. Moreover, t he  estimation procedure of Section 2 does not require -that 

a l l  data records be f u l l  ( i .  e., have no missing elements), but only tha t  thbere exist 

f u l l  vectors. In addition, a vector with missing elements are indexed by multiply- 

ing b by tha t  vector with i t s  mtssing elements f i l l e d  by the combined mean estimate - 

Thus, the index of Section 2 deviates from a "standard" index i n  that, firs*, 

we estimate b by estimating P, and, second, the parent phenotypic vector distribution 

i s  non-normal. We c i t e  the r e su l t s  tabulated i n  Section 3 ( ~ a b l e s  1 t o  4) as 

empirical indications of the procedure's properties, viz., consistency a16 a spp to t i e  

efficiency. For further t h e o r e t i e d  just i f icat ions for  a similar technique see 

Hocking and Oxspring [19711. 

Note tha t  i n  Table 5, the cornpaxison of the ranking resul t ing from the S-P 

multivariate normal procedure and the  Section 2 procedure indicates t l ~ a t  use of m 

estimated index assunring a multivariate normal conf &mat ion does not lead t o  



unwarranted resul ts .  Thus, the value of the Sectj.cn 2 procedure would be in. the 

s l ight ly  more precise ordering achieved and since during the indexing process both 

estimates of phenotypic means and covaxiance matrix axe found. 

Future problems include combining the multivariate noma3 and rml%i.nomial 

procedures t o  yield an index of vectors some of whose elements are con%iliuously 

distributed, others discrete.  In addition, nonlinear competitors fo r  both e s t ~ ~ a k e  

indices are being considered. 
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